

V, I, R measurements

590B

Makariy A. Tanatar

September 23, 2009

SI units/History
Resistivity measurements

First reliable source of electricity
Alternating plates of Zn and Cu separated by cardboard soaked in saltwater

Electrical action is proportional to the number of plates

Alessandro Giuseppe Antonio Anastasio Volta 1745-1827 Count (made by Napoleon 1810) 1881- Volt unit adopted internationally

André-Marie Ampère 1775 - 1836

Months after 1819 Hans Christian Ørsted's discovery of magnetic action of electrical current

1820 Law of electromagnetism (Ampère's law) magnetic force between two electric currents.

First measurement technique for electricity Needle galvanometer

1826 Ohm's apparatus

Current measurement: magnetic needle

Voltage source: thermocouple (Seebeck 1821) Steam heater Ice cooler

Georg Simon Ohm 1789 - 1854

$$I=V/R$$

Resistivity

$$ho = R \; rac{A}{\ell}$$

D'Arsonval galvanometer

Can be measured via
Magnetic action of electric current
Heat
Mass flow (electrolysis)
Light generation
Physiological action (Galvani,
You can do anything with cats!)

Ampere main SI unit:

Definition based on force of interaction between parallel current

Replaced recently Amount of deposited mass per unit time in electrolysis process

Thompson (Kelvin) mirror galvanometer

^

Our common experience: resistance is the simplest quantity to measure

True, but only inside "comfort zone"

Use Ohm's law

Apply known I (V) Measure V (I) Calculate resistance

Digital Multi Meters - DMM

Implicit: Ohm's law is valid for our measurement object, I-V curve is linear May be far from true!

Implicit: our whole circuit is linear and no offsets! Assumption: wire resistance is negligible

Typical characteristics

1 mV per last digit

1 µA per last digit

High input offset current

Low input impedance

Resistance 4-probe measurements (Kelvin probe measurement)

To minimize wire resistance effect for remote objects
To minimize the effect of contacts for resistivity measurements
Even allows slightly rectifying contacts
and "high" resistance contacts

FIGURE 3-15: Four-Wire Resistance Measurement

Current source in one circuit Potential voltage measurement in ANOTHER circuit

FIGURE 2-31: Constant-Current Method Using a Separate Current Source and Voltmeter

Thanks Adam!

Resistance: bridge measurement

At balance I = 0

$$Z1 . Z4 = Z2 . Z3$$

Replaces I and V measurement by resistance compensation to obtain zero reading
No effect of circuit non-linearity,
In old days PRECISE DIGITAL measurement

Does not go well with modern electronics

Slide Wire Wheatstone Bridge

Resistance Decade Bridge

Resistance 4-probe measurements Consideration of noise sources

Wires generate spurious DC Voltages

- -Thermoelectric (thermal gradients) 1/f noise
- -Galvanic (oxidation) 1/f noise
- -RF interference and rectification in contacts

$$V_M = IR + V_{offset}$$

DC Delta method Measure at I+ Measure at Iaverage

-Thermal EMF errors Most common source in low level Voltage measurements

Each wire junction forms a thermocouple

-Galvanic potentials in contacts Gold plating to avoid oxidation

-Noise caused by magnetic fields

Extremely important for AC measurements Wires vibrate and AC voltage generated

Twisted pairs Fixed wires

Copper-to-	Approx. μV / °C				
Copper	< 0.3				
Gold	0.5				
Silver	0.5				
Brass	3				
Beryllium Copper	5				
Aluminum	5				
Kovar or Alloy 42	40				
Silicon	500				
Copper-Oxide	1000				
Cadmium-Tin Solder	0.2				
Tin-Lead Solder	5				

FIGURE 3-10: Minimizing Interference from Magnetic Fields

Ground loops

Current source and voltmeter have grounded terminals

Grounds are not ideal and are under some potential

Devices grounded in different points acquire potential difference which contributes to the measured signal

Common mode rejection

Finite resistance between LO terminal and ground

If I am measuring voltage difference V_H-V_L, it will depend on V_L!

Noise caused by injected current

Same for capacitance charging Mainly 60 Hz power line noise

Figure 4.

N.B. The most important sources of error in 4-probe resistance measurements
Contact voltage drop is equivalent to common mode voltage Typically Common Mode Rejection of DMM is 10⁵-10⁶

Good Bad

Figure 6.

Injected current bypasses the measured resistance

Injected current flows through the Measured resistance

Loading errors due to input resistance

Important for high resistance measurements
Typical
DC 10 GOhm

Loading errors due to input bias current

AC 1 MOhm 100 pF

Figure 7.

Figure 8.

Shielding

Electrostatic Faraday cage

Magnetic shielding

To prevent EMI

Unfortunately not very useful In the lab, can not put electronics at low T

Shielding

FIGURE 3-6: Shielding to Attenuate RFI/EMI Interference

General rule Avoid grounds in measurement circuits Ground shields

Johnston noise

voltage

$$E = \sqrt{4kTRB}$$
 volts, rms

current

$$I = \frac{\sqrt{4kTRB}}{R}$$
 amperes, rms

B bandwidth

FIGURE 1-2: Theoretical Limits of Voltage Measurements

Going outside comfort zone: DC measurements

Special designs

High impedance source Electrometer Used for I<10 nA, G>1 G Ω Input impedance ~100 T Ω Input offset current <3fA Capable of R measurement up to 300 G Ω

Low impedance source- Nanovoltmeter <1 nV

Source-measure units for resistance measurements

FIGURE 1-3: Typical Digital Multimeter (DMM), Nanovoltmeter (nVM), Nanovolt Preamplifier (nV PreAmp), and Electrometer Limits of Measurement at Various Source Resistances

Here DMM is from Keithley, not from Fluke!

Low resistances: AC may be a better choice

Lock-in resistance measurements SR830 Built-in AC voltage generator

"Ohmic contacts" required for AC measurements

AC in differential mode avoids offsets
Low frequency (below power grid, typically 10-20 Hz)

Problem: low input impedance, Not good for high resistance sources

Problem: current source is not precise

Very popular simple and reasonably precise resistance measurement

Low resistances: AC may be a better choice

Resistance bridges LR700, AVS47, SIM927 and LS370

Actually these are not bridges!

Do not use compensation

Ratiometric resistance measurement

- Low noise
- Low excitation power
- •AC

Resistance measurements

Specialized for low-temperature precision resistance measurements

AC to avoid offsets Low frequency (below power grid, typically 10-20 Hz)

SIM927 Comparators measuring reference resistance voltage and in-phase component of sample resistance voltage

Ways to reduce noise:

Reduce bandwidth

- -averaging (digital or analog)
- -filtering

Very long term measurements are susceptible to other errors, Temperature drift

Cool down the source 300K to 3K 10 times noise decrease

Low temperature transformers and Preamplifiers in DR

Source resistanceLow resistance contacts

FIGURE 2-52: Noise Voltage vs. Bandwidth at Various Source Resistances

www.keithley.com

HM

Low Level Measurements Handbook

Precision DC Current, Voltage, and Resistance Measurements

The Delta Method of Measuring Resistance

Figure 2a: The graph depicts an alternating, three-point delta method of measuring voltage with no thermoelectric voltage error.

Figure 2b: A linearly increasing temperature generates a changing thermoelectric voltage error, which is eliminated by the three-point delta method.

$$V_1 = 2.5 \mu V$$
; $V_2 = -2.5 \mu V$; $V_3 = 2.5 \mu V$

3 point Delta Method

$$V_a$$
 = negative-going step = $(V_1 - V_2)/2$
= 2.45 μ V

$$V_b$$
 = positive-going step = $(V_3 - V_2)/2$
= 2.55 μ V

$$V_f$$
 = final voltage reading = $(V_a + V_b)/2$
= $\frac{1}{2}[(V_1 - V_2)/2 + (V_3 - V_2)/2]$
= 2.5 μ V

Figure 3: A graph comparing the results of applying a two- and three-point delta method shows significant noise reduction using the three-point method.

Figure 6: Making differential conductance measurements using just two instruments that incorporate all of the instruments used in the AC technique.

Figure 7: The waveform used in the new technique is a linear staircase function that combines an alternating current with a staircase current.

High resistance measurements

FIGURE 2-33: Electrometer Ohmmeter for Measuring High Resistance

Special features: Guarded cables Triaxial connectors

FIGURE 2-34a: Effects of Cable Resistance on High Resistance Measurements

FIGURE 2-34b: Equivalent Circuit of Figure 2-34a Showing Loading Effect of Cable Leakage Resistance R₁.

FIGURE 2-34c: Guarding Cable Shield to Eliminate Leakage Resistance

High resistance measurements

Because of parasitic capacitance and high impedance only DC measurements

Important to make correct electrometer connections

FIGURE 2-40: Proper Connection

FIGURE 2-41: Improper Connection

FIGURE 2-35: Settling Time is the Result of R_SC_{SHUNT} Time Constant

FIGURE 2-36: Exponential Settling Time Caused by Time Constant of Shunt Capacitance and Source Resistance

High resistance measurements

Guard ring technique:

(a) Circuit that measures insulation volume resistance in parallel with surface leakage resistance

$$R_{meas} = R_s // R_v = \frac{V}{I_s + I_v}$$

- Volume resistance, R_v
- Surface leakage resistance, R,

(b) Use of guard ring to measure only volume resistance

$$R_{meas} = R_{v} = \frac{V}{I_{v}}$$

Resistivity measurements: 4-probe

"Ohmic contacts" required for AC measurements

Figure 1. Schematic of the co-linear 4-probe configuration with electrodes that span the width of the specimen.

		==										
	-	-	•	•	•	•	•				_	
	*		×					4				
					٠			٠				
	*	*	81		2.5	15	*	21	*	*		
			*:									
1	١					,						

Concerns Different I and V circuits May be disconnected!

Potential contacts should be connected well to current path

Strict requirements on sample shape

Probably most famous artefact

Superconducting fluctuations and the Peierls instability in an organic solid SSC 12, 1125 (1973)

Four probe measurement in bridge configuration

Four-Terminal Resistor

Four-terminal resistors have current terminals and potential terminals. The resistance is defined as that between the potential terminals, so that contact voltage drops at the current terminals do not introduce errors.

Four-Terminal Resistor and Kelvin Double Bridge

- r_1 causes no effect on the balance condition.
- The effects of r_2 and r_3 could be minimized, if $R_1 >> r_2$ and $R_a >> r_3$.
- The main error comes from r_4 , even though this value is very small.

FEBRUARY 1958

Philips Research Reports

EDITED BY THE RESEARCH LABORATORY
OF N.V. PHILIPS' GLOEILAMPENFABRIEKEN, EINDHOVEN, NETHERLANDS

R 334

Philips Res. Repts 13, 1-9, 1958

A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE

by L. J. van der PAUW

537.723.1:53.081.7+538.632:083.9

Summary

A method of measuring specific resistivity and Hall effect of flat samples of arbitrary shape is presented. The method is based upon a theorem which holds for a flat sample of arbitrary shape if the contacts are sufficiently small and located at the circumference of the sample. Furthermore, the sample must be singly connected, i.e., it should not have isolated holes.

Resistivity measurements: van der Pauw method

Very popular in semiconductor industry Does not require sample of regular shape

Assumptions

- Homogeneous sample
- 2. Isotropic sample
- 3. Two-dimensional, thickness is unimportant
- 4. Sample boundary sharply defined

Surface resistance

$$\rho_{\Box} = \frac{\pi}{\ln 2} \; \frac{R_{ab-cd} + R_{bc-da}}{2} \; f$$

Resistivity

$$\rho = \frac{\pi}{\ln 2} W \frac{R_{ab-cd} + R_{bc-da}}{2} f$$

The contact arrangements for the two resistance measurements, R_{ab-cd} and R_{bc-da} used in the Van der Pauw resitivity measurement.

Correction factor based on the ratio of the two resistance measurements, $R_{ab\text{-}cd}$ and $R_{bc\text{-}da}$ used in the Van der Pauw resitivity measurement.

JOURNAL OF APPLIED PHYSICS

Method for Measuring Electrical Resistivity of Anisotropic Materials

H. C. MONTGOMERY

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974
(Received 30 November 1970)

A rectangular prism with edges in principal crystal directions is prepared with electrodes on the corners of one face. Voltage—current ratios for opposite pairs of electrodes permit calculation of components of the resistivity tensor. The method can use small samples, and is best suited to materials describable by two or three tensor components. Examples are given of measurements of V₂O₃—Cr and oriented amorphous graphite.

Montgomery technique

$$(\rho_2/\rho_1)^{1/2} = (l_2/l_1) \times (l_1'/l_2')$$
.

1. Van der Pauw resistivity measurements on samples of rectangular

- 2. Calculation of the anisotropy ratio for isotropic samples
- by van der Pauw scaling transformation

Fig. 3. Resistance ratio versus sample dimension ratio. Solid 3. Scaling anisotropic samples on isotropic line is for a thin sample; dashed line for a thick sample. Details of thickness dependence given in Table II.

Interference Factor

- Ohmic contact quality and size
- Sample uniformity and accurate thickness determination
- Photoconductive and photovoltaic effects

Reading

- 1. Low Level Measurements Handbook, Keithley www.keithley.com
- 2. Lake Shore manual for LS370
- 3. J. M. Ziman, Principles of the Theory of Solids, 1964